Paper Title | Authors |
Computer games or the trajectories of physics? Discovering the Carnot cycle using reinforcement learning | Stephen Whitelam (Lawrence Berkeley National Lab)* |
Coordinated Exploration via Intrinsic Rewards for Multi-Agent Reinforcement Learning | Shariq Iqbal (University of Southern California)*; Fei Sha (Google Research) |
Collaborative Evolutionary Reinforcement Learning | Shauharda Khadka (Intel AI Lab); Somdeb Majumdar (Intel AI Lab)*; Santiago Miret (Intel AI Lab); Evren Tumer (Intel Corporation) |
Topic Augmented Generator for Abstractive Summarization | Melissa Ailem (University of Southern California)*; Bowen Zhang (University of Southern California); Fei Sha (Google Research) |
Image Captioning: Transforming Objects into Words | Simao Herdade (Yahoo Research)*; Kofi A Boakye (Yahoo Research ); Armin Kappeler (Yahoo Research); Joao V. B. Soares (Yahoo Research) |
Cross-View Policy Learning for Street Navigation | Ang Li (DeepMind, Mountain View)*; Huiyi Hu (Google); Piotr Mirowski (DeepMind); Mehrdad Farajtabar (DeepMind) |
Layout-induced Video Representation for Recognizing Agent-in-Place Actions | Ruichi Yu (Waymo LLC.)*; Hongcheng Wang (Comcast); Ang Li (DeepMind, Mountain View); Jingxiao Zheng (University of Maryland, College Park); Vlad I Morariu (Adobe Research); Larry Davis (University of Maryland) |
Uncertainty Modeling of Contextual-Connection between Tracklets for Unconstrained Video-based Face Recognition | Jingxiao Zheng (University of Maryland, College Park)*; Ruichi Yu (Waymo LLC.); Jun-Cheng Chen (University of Maryland); Boyu Lu ("University of Maryland, College Park"); Carlos Castillo (University of Maryland); Rama Chellappa (University of Maryland) |
Neural Assistant: Joint Action Prediction, Response Generation, and Latent Knowledge Reasoning | Arvind Neelakantan (Google Inc)* |
BERT-DST: Scalable End-to-End Dialogue State Tracking with Bidirectional Encoder Representations from Transformer | Guan-Lin Chao (Carnegie Mellon University)*; Ian Lane (Carnegie Mellon University) |
Improved Knowledge Distillation via Teacher Assistant: Bridging the Gap Between Student and Teacher | Seyed Iman Mirzadeh (Washington State University); Mehrdad Farajtabar (DeepMind)*; Ang Li (DeepMind, Mountain View); Hassan Ghasemzadeh (Washington State University) |
Addressing the Loss-Metric Mismatch with Adaptive Loss Alignment | Chen Huang (Apple)*; Shuangfei Zhai (Apple); Walter Talbott (Apple); Miguel Angel Bautista Martin (Apple Inc.); Shih-Yu Sun (Apple); Carlos Guestrin (Apple); Josh Susskind (Apple) |
An Improved Triplet Loss Formulation | Walter Talbott (Apple)*; Chen Huang (Apple); Shih-Yu Sun (Apple); Josh Susskind (Apple) |
Striving for Simplicity in Off-policy Deep Reinforcement Learning | Rishabh Agarwal (Google Research, Brain Team)*; Dale Schuurmans (Google / University of Alberta); Mohammad Norouzi (Google Brain) |
Rapid gamma-ray burst localization aboard the All-Sky-Astrogam satellite using a 3D convolutional neural network | Ruoxi Shang (UC Berkeley)*; Andreas Zoglauer (University of California, Berkeley) |
Causal Confusion in Imitation Learning | Pim de Haan (University of Amsterdam)*; Dinesh Jayaraman (UC Berkeley); Sergey Levine (UC Berkeley) |
Prediction, Consistency, Curvature: Representation Learning for Locally-Linear Control | Nir Levine (Deepmind)*; Yinlam Chow (Google AI); Rui Shu (Stanford University); Mohammad Ghavamzadeh (Facebook AI Research); Ang Li (DeepMind, Mountain View); Hung H Bui (VinAI Research) |
Robust Reinforcement Learning for Continuous Control with Model Misspecification | Nir Levine (Deepmind)*; Daniel Mankowitz (DeepMind); Rae Jeong (DeepMind); Abbas Abdolmaleki (Google DeepMind); Jost Tobias Springenberg (DeepMind); Timothy Arthur Mann (); Todd Hester (DeepMind); Martin Riedmiller (DeepMind) |
Multiagent Evolutionary Reinforcement Learning | Shauharda Khadka (Intel AI Lab); Somdeb Majumdar (Intel AI Lab)* |
Bridging the Gap for Tokenizer-Free Language Models | Dokook Choe (Google)*; Rami Al-Rfou' (rmyeid@google.com); Mandy Guo (xyguo@google.com); Heeyoung Lee (hylee@google.com); Noah Constant (nconstant@google.com)
|
The Trajectron: Probabilistic Multi-Agent Trajectory Modeling with Dynamic Spatiotemporal Graphs | Boris Ivanovic (Stanford University)*; Marco Pavone (Stanford University) |
A Fourier Perspective on Model Robustness in Computer Vision | Dong Yin (University of California, Berkeley)*; Raphael Gontijo Lopes (Google Brain); Jonathon Shlens (Google); Ekin D Cubuk (Google Brain); Justin Gilmer (Google Brain) |
When to Trust Your Model: Model-Based Policy Optimization | Michael Janner (UC Berkeley)*; Justin Fu (UC Berkeley); Marvin Zhang (UC Berkeley); Sergey Levine (UC Berkeley) |
Compressing Gradient Optimizers via Count-Sketches | Ryan D Spring (Rice University)*; Anshumali Shrivastava (Rice University); Anastasios Kyrillidis (Rice University ); Vijai Mohan (www.amazon.com) |
The invisible hand of fractals and scaling in recommendations | Francois W Belletti (Google)*; Minmin Chen (Google); Ed Chi (Google); Yi-fan Chen (Google); Nic Mayoraz (Google); Tayo Oguntebi (Google LLC); John Anderson (Google) |
Hydroclimate and Snowpack Modeling with cGANs | Adrian Albert (MIT)* |
Multitask Learning for Recommendation Systems | Zhe Zhao (Google Brain)*; Lichan Hong (Google); Jilin Chen (Google Brain); Xinyang Yi (Google); Maheswaran Sathiamoorthy (Google); Li Wei (Google); Ruoxi Wang (Google); Ji Yang (Google); Zhiyuan Cheng (Google); Ed Chi (Google) |
Creating xBD: A Dataset for Assessing Building Damage from Satellite Imagery | Ritwik Gupta (Carnegie Mellon University Software Engineering Institute)*; Bryce Goodman (Defense Innovation Unit); Nirav Patel (Defense Innovation Unit); Richard Hosfelt (Carnegie Mellon University Software Engineering Institute); Sandra Sajeev (Carnegie Mellon University Software Engineering Institute); Eric Heim (Carnegie Mellon University Software Engineering Institute); Jigar Doshi (CrowdAI, Inc.); Keane Lucas (Joint Artificial Intelligence Center); Howie Choset (Carnegie Mellon University); Matthew Gaston (Carnegie Mellon University Software Engineering Institute) |
REPLAB: A Reproducible Low-Cost Arm Benchmark Platform for Robotic Learning | Brian Yang (UC Berkeley); Jesse Zhang (UC Berkeley); Vitchyr H Pong (UC Berkeley); Sergey Levine (UC Berkeley); Dinesh Jayaraman (UC Berkeley)* |
Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction | Justin Fu (UC Berkeley)*; Aviral Kumar (UC Berkeley) |
Near Real-time Engagement Optimization of Mobile Notifications | Yiping Yuan (LinkedIn)*; Padmini Jaikumar (LINKEDIN CORPORATION); Yan Gao (LINKEDIN CORPORATION); Ajith Muralidharan (LINKEDIN CORPORATION) |
Distributed Learning of Latent Representation Social Network Graph Entities | Yiou Xiao (LinkedIn)*; Yafei Wang (LinkedIn); Matthew Walker (Linkedin) |
Understanding Posterior Collapse in Variational Autoencoders | James R Lucas (University of Toronto)*; Mohammad Norouzi (Google Brain); George Tucker (Google Brain); Roger B Grosse (University of Toronto) |
Zero-Shot Transfer Learning for Query-Item Cold Start in Search Retrieval and Recommendations | Tao Wu (iotao@google.com)*; Ellie Ka-In Chio (echio@google.com); Heng-Tze Cheng (hengtze@google.com); Yu Du (cosmodu@google.com); Ritesh Agarwal (riteshag@google.com); Dima Kuzmin (dimakuzmin@google.com); Steffen Rendle (srendle@google.com); Li Zhang (liqzhang@google.com); John Anderson (janders@google.com); Sarvjeet Singh (sarvjeet@google.com); Tushar Chandra (tushar@google.com); Ed H. Chi (edchi@google.com); Wen Li (lwen@google.com); Ankit Kumar (ankitkr@google.com); Xiang Ma (xiangma@google.com); Alex Soares (alexsoares@google.com); Nitin Jindal (nitinjindal@google.com); Pei Cao (pei@google.com)
|
Neural Modeling for Large Corpus Item Recommendations | Xinyang Yi (Google)*; Ji Yang (Google); Zhiyuan Cheng (Google); Zhe Zhao (Google Brain); Lichan Hong (Google); Ed Chi (Google) |
Collapsed amortized variational inference for switching nonlinear dynamical systems | Zhe Dong (Google)*; Bryan Seybold (Google); Kevin Murphy (Google); Hung H Bui (VinAI Research) |
Semantic Coherence Analysis | Moussa Doumbouya (Work done while at Apple Inc.)*; Skyler Seto (Work done while at Apple Inc.); Enguerrand Horel (Work done while at Apple Inc); Luca Zappella (Apple Inc.); Xavier Suau Cuadros (Apple Inc.); Nicholas Apostoloff (Apple Inc.) |
Evolving Losses for Video Representation Learning | AJ Piergiovanni (Indiana University)*; Anelia Angelova (Google); Michael S Ryoo (Google Brain; Indiana University) |
Learning an Adaptive Learning Rate Schedule | Zhen Xu (Google)*; Andrew M Dai (Google Brain); Jonas Kemp (Google); Luke Metz (Google Brain) |
Learning Differentiable Grammars for Videos | AJ Piergiovanni (Indiana University)*; Anelia Angelova (Google); Michael S Ryoo (Google Brain; Indiana University) |
EvaNet: A Family of Diverse, Fast and Accurate Video Architectures | AJ Piergiovanni (Indiana University); Anelia Angelova (Google)*; Alexander Toshev (Google); Michael S Ryoo (Google Brain; Indiana University) |
A Programming System and Automation Libraries for DNN Model Compression | Vinu Joseph (UNIVERSITY OF UTAH)*; Saurav Muralidharan (NVIDIA); Animesh Garg (Stanford, Nvidia); Ganesh Gopalakrishnan (University of Utah); Michael Garland (NVIDIA) |
Energy-Inspired Models | Dieterich Lawson (NYU); George Tucker (Google Brain)*; Bo Dai (Google Brain); Rajesh Ranganath (New York University) |
Unlabeled Data Improves Adversarial Robustness | Yair Carmon (Stanford)*; Aditi Raghunathan (Stanford University); Ludwig Schmidt (UC Berkeley); Percy Liang (Stanford University); John Duchi (Stanford University) |
Skew-Fit: State-Covering Self-Supervised Reinforcement Learning | Murtaza Dalal (UC Berkeley)*; Vitchyr H Pong (UC Berkeley); Steven Lin (UC Berkeley); Ashvin V Nair (UC Berkeley); Shikhar Bahl (UC Berkeley); Sergey Levine (UC Berkeley) |
Randomized Bandit Exploration Revisited | Branislav Kveton (Google Research)*; Csaba Szepesvari (DeepMind/University of Alberta); Mohammad Ghavamzadeh (Facebook AI Research); Craig Boutilier (Google Research) |
COTA: Improving the customer support experience using Deep Learning | Aditya V Guglani (Uber Technologies, Inc.)*; Huaixiu Zheng (Uber Technologies); Hugh Williams (Uber); Arun Bodapati (Uber Technologies, Inc.) |
Personalization and Optimization of Decision Parameters via Heterogenous Causal Effects | Ye Tu (LinkedIn Corporation)*; Kinjal Basu (LinkedIn Corporation); Shaunak Chatterjee (Linkedin); Jinyun Yan (Linkedin); Birjodh Tiwana (Linkedin) |
Modeling Local Geometric Structure of 3D Point Clouds using Geo-CNN | Shiyi Lan (University of Maryland)*; Ruichi Yu (Waymo LLC.); Gang Yu (Megvii Inc); Larry Davis (University of Maryland) |
Variance Reduction for Matrix Games | Yair Carmon (Stanford)*; Yujia Jin (Stanford University); Aaron Sidford (Stanford); Kevin Tian (Stanford University) |
Curvature: A Scalable Deep Learning Architecture for Real-Time Back-Scatter EM Sensing | Luca Rigazio (Totemic)*; Samuel Joseph (Totemic) |
Online Meta-Reinforcement Learning via Gaussian Process Temporal Difference Learning | Roman Engeler (ETH Zurich); James Harrison (Stanford University)*; Apoorva Sharma (Stanford University); Emma Brunskill (Stanford University); Marco Pavone (Stanford University) |
Stand-Alone Self-Attention for Vision Models | Prajit Ramachandran (Google)*; Niki Parmar (Google); Ashish Vaswani (Google Brain); Irwan Bello (Google); Anselm Levskaya (Google); Jonathon Shlens (Google) |
Practical Thompson Sampling for Constrained Contextual Bandit Problems | Samuel Daulton (Facebook)*; Shaun Singh (Facebook); Drew Dimmery (Facebook); Eytan Bakshy (Facebook) |
InfoCNF: An Efficient Conditional Continuous Normalizing Flow with Adaptive Solvers | Tan Minh Nguyen (Rice University)*; Animesh Garg (Stanford, Nvidia); Richard Baraniuk (Rice University); Animashree Anandkumar (Caltech) |
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift | Yaniv Ovadia (Google Inc); Emily Fertig (Google); Jie Ren (Google Research); Zachary Nado (Google Inc.); D Sculley (Google); Sebastian Nowozin (Google Research); Joshua V Dillon (Google); Balaji Lakshminarayanan (Google DeepMind)*; Jasper Snoek (Google Brain) |
Do Deep Generative Models Know What They Don't Know? | Eric Nalisnick (DeepMind); Akihiro Matsukawa (DeepMind); Yee Whye Teh (DeepMind); Dilan Gorur (); Balaji Lakshminarayanan (Google DeepMind)* |
Social Skill Validation at LinkedIn | Xiao Yan (LinkedIn)*; Jaewon Yang (LINKEDIN CORPORATION); Qi He (LinkedIn) |
Off-Policy Policy Gradient with StationaryDistribution Correction | Yao Liu (Stanford University)*; Alekh Agarwal (Microsoft); Adith Swaminathan (Microsoft Research); Emma Brunskill (Stanford University) |
Better predictions with contextual pretraining over clinical notes | Jonas Kemp (Google)*; Alvin Rajkomar (Google); Andrew M Dai (Google Brain) |
Ultra Fast Medoid Identification via Correlated Sequential Halving | Tavor Z Baharav (Stanford University)*; David Tse (Stanford University) |
PEARL: Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables | Kate Rakelly (UC Berkeley)*; Aurick Zhou (UC Berkeley); Deirdre Quillen (UC Berkeley); Chelsea Finn (UC Berkeley); Sergey Levine (UC Berkeley) |
The Optimal Model Design Problem | Pierre-Luc Bacon (Stanford University)*; Emma Brunskill (Stanford University) |
Which Tasks Should Be Learned Together in Multi-task Learning? | Trevor S Standley (Stanford University)*; Amir Zamir (Stanford, UC Berkeley); Dawn Chen (Google); Leonidas Guibas (Stanford University); Jitendra Malik (University of California at Berkley); Silvio Savarese (Stanford University) |
Do deep neural networks train by learning shallowlearnable examples first? | Karttikeya Mangalam (Stanford University)* |
No More Mode Collapse | Ke Li (UC Berkeley)*; Jitendra Malik (University of California at Berkley) |