Schedule

The event starts at 9:20am and ends at 6pm on Thursday, October 22nd, 2015. Registration opens at 8:30am.
 
The program includes
  • 3 invited talks by Yann LeCun, Trevor Darrell, and Jeff Dean;
  • 9 short talks and two poster sessions;
  • and, most importantly, break/lunch time for discussion.

 8:30am  Registration   Registration opens  
 9:20am    Welcome to BayLearn 2015!  Andrew Ng, Baidu Research; Adam Coates, Baidu Research
 9:30am  Keynote 1   Yann LeCun, Facebook
 The path to AI requires us to solve the unsupervised learning question
 10:15am    Session 1
 
 Session Chair: Joaquin Quinonero Candela

 Moritz Hardt (Google); Benjamin Recht (UC Berkeley); Yoram Singer (Google)
 Train faster, generalize better: Stability of stochastic gradient descent


 David Helmbold (UC Santa Cruz); Philip Long (Sentient)
 Exploring Dropout's Bias
 10:45am  Break    
 11:15am    Session 2

 Session Chair: Jean-Francois Paiement

 Miguel Carreira-Perpinan (UC Merced); Ramin Raziperchikolaei (UC Merced) 
 
An Ensemble Diversity Approach to Binary Hashing

 
Cynthia Dwork (Microsoft Research); Vitaly Feldman (IBM Research - Almaden); Moritz Hardt (Google);
 Toniann Pitassi (University of Toronto); Omer Reingold (Samsung Research America); Aaron Roth (University of Pennsylvania)
 
Generalization in Adaptive Data Analysis and Holdout Reuse

 
Hung Bui (Adobe Research); Jaya Kawale (Adobe Research); Branislav Kveton (Adobe Research); 
 Long Tran-Thanh; Sanjay Chawla (University of Sydney) 
 
Efficient Thompson Sampling for Online Matrix-Factorization Recommendation

 
Michael Pacer (UC Berkeley); Tom Griffiths (UC Berkeley)
 
Some points on graphs: finitary Poisson processes, interventions and first-shot events
 12:15pm  Lunch + Poster session  Complimentary lunch provided
 
 1:45pm  Keynote 2  Trevor Darrell, UC Berkeley
 Perceptual representation learning across diverse modalities and domains
 2:30pm  Session 3

 Session Chair: Alexei Pozdnoukhov
 Haonan Yu (Purdue University), Jiang Wang (Baidu), Zhiheng Huang (Facebook), Yi Yang (Baidu), Wei Xu (Baidu) 
 Video Paragraph Captioning using Hierarchical Recurrent Neural Networks

 Jimei Yang (UC Merced), Scott Reed (U Mich), Ming-Hsuan Yang (UC Merced), Honglak Lee (U Mich) 
 Learning to Rotate 3D Objects with Recurrent Convolutional Encoder-Decoder Networks
 3:00pm  Break    
 3:30pm      Session 4

 Session Chair: Samy Bengio
 Ashesh Jain (Stanford University); Ashutosh Saxena (Brain Of Things)
 Brain4Cars: Sensory-Fusion Recurrent Neural Models for Driver Activity Anticipation
 3:45pm      Keynote 3
 Jeff Dean, Google
 Large-Scale Deep Learning for Intelligent Computer Systems
 4:30pm  Reception + Poster session    
 6:00pm    End of the Symposium  



Posters

Kan Chen*, Univ. of Southern California
Jiang Wang, Baidu USA LLC
Wei Xu, Baidu USA LLC

Khaled Refaat*, UCLA
Adnan Darwiche, UCLA

Eric Bax*, Yahoo Labs
Ya Le, Stanford

Bharath Ramsundar*, Stanford
Steven Kearnes, Stanford
Patrick Riley, Google
Dale Webster, Google
David Konerding, Google
Vijay Pande, Stanford

Zefu Lu, University of illinois
Lei Li*, Baidu
Wei Xu, Baidu USA LLC

Mohammad Taghavi*, Netflix, Inc
Justin Basilico, Netflix, Inc.

Dimitris Achlioptas*, UC Santa Cruz
Pei Jiang, UC Santa Cruz

Chengjie Qin, UC Merced
Florin Rusu*, UC Merced

Dilan Gorur*, Microsoft
Rimmi Devgan, Microsoft
Eren Manavoglu, Microsoft

Hieu Pham*, Stanford University
Zihang Dai, Carnegie mellon university
Lei Li, Baidu

Roni Mittelman*, BlackRock

A. Nagpal, C. Liu, J. Wen, H. Shukla, I. Georgieva, I. Singhal and S. Yang
Nutanix Inc.

Miguel Carreira-Perpinan*, UC Merced
Mehdi Alizadeh, UC Merced

Suyoun Kim*, Carnegie Mellon University
bhiksha Raj, Carnegie Mellon University
Ian Lane, Carnegie Mellon University

Jaeyong Sung*, Cornell University
Ian Lenz, 
Seok Hyun Jin, 
Ashutosh Saxena, Brain Of Things Inc

Isabelle Guyon*, ChaLearn

Akshay Chandrashekaran*, Carnegie Mellon University
Ian Lane, Carnegie Mellon University